Extensions 1→N→G→Q→1 with N=C2xF7 and Q=C22

Direct product G=NxQ with N=C2xF7 and Q=C22
dρLabelID
C23xF756C2^3xF7336,216

Semidirect products G=N:Q with N=C2xF7 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xF7):1C22 = C2xC4:F7φ: C22/C2C2 ⊆ Out C2xF756(C2xF7):1C2^2336,123
(C2xF7):2C22 = D4xF7φ: C22/C2C2 ⊆ Out C2xF72812+(C2xF7):2C2^2336,125
(C2xF7):3C22 = C2xDic7:C6φ: C22/C2C2 ⊆ Out C2xF756(C2xF7):3C2^2336,130

Non-split extensions G=N.Q with N=C2xF7 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xF7).1C22 = D28:6C6φ: C22/C2C2 ⊆ Out C2xF7566(C2xF7).1C2^2336,124
(C2xF7).2C22 = D4:2F7φ: C22/C2C2 ⊆ Out C2xF75612-(C2xF7).2C2^2336,126
(C2xF7).3C22 = Q8:3F7φ: C22/C2C2 ⊆ Out C2xF75612+(C2xF7).3C2^2336,128
(C2xF7).4C22 = C2xC4xF7φ: trivial image56(C2xF7).4C2^2336,122
(C2xF7).5C22 = Q8xF7φ: trivial image5612-(C2xF7).5C2^2336,127

׿
x
:
Z
F
o
wr
Q
<